Electrically switchable organo–inorganic hybrid for a white-light laser source

نویسندگان

  • Jui-Chieh Huang
  • Yu-Cheng Hsiao
  • Yu-Ting Lin
  • Chia-Rong Lee
  • Wei Lee
چکیده

We demonstrate a spectrally discrete white-light laser device based on a photonic bandgap hybrid, which is composed of a soft photonic crystal; i.e., a layer of dye-doped cholesteric liquid crystal (CLC), sandwiched between two imperfect but identical, inorganic multilayer photonic crystals. With a sole optical pump, a mono-, bi-, or tri-chromatic laser can be obtained and, through the soft photonic crystal regulated by an applied voltage, the hybrid possesses electrical tunability in laser wavelength. The three emitted spectral peaks originate from two bandedges of the CLC reflection band as well as one of the photonic defect modes in dual-mode lasing. Thanks to the optically bistable nature of CLC, such a white-light laser device can operate in quite an energy-saving fashion. This technique has potential to fulfill the present mainstream in the coherent white-light source.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer

Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...

متن کامل

Conductive Polythiophene Nanoparticles Deposition on Transparent PET Substrates: Effect of Modification with Hybrid Organic-inorganic Coating (RESEARCH NOTE)

In this work, Poly(ethyleneterephthalate) (PET) substrate was treated using KOH solution and was modified using hybrid O-I coating containing PCL )polycaprolactone( as organic phase and TEOS )tetraethoxysilane( as inorganic phase. The coating was prepared through a sol-gel process and applied on the surface by dip coater. Then, electrically conducting polythiophene (PTh) nanoparticles were depo...

متن کامل

A hybrid light source with integrated inorganic light-emitting diode and organic polymer distributed feedback grating.

We report a compact light source that incorporates a semiconductor light-emitting diode, nanostructured distributed feedback (DFB) Bragg grating and spin-coated thin conjugated polymer film. With this hybrid structure, we transferred electrically generated 390 nm ultraviolet light to an organic polymer via optical pumping and out-couple green luminescence to air through a second-order DFB grati...

متن کامل

Optical and electrical switching of cholesteric liquid crystals containing azo dye

We propose an optically and electrically switchable cholesteric liquid crystal (ChLC) cell dopedwith a push– pull azo dye. When the proposed ChLC cell is exposed to UV light, it is switched from the focal-conic to isotropic state by a cholesteric-isotropic phase transition through a trans–cis photo-isomerization of push–pull azo dye molecules. With removal of UV light, the ChLC cell will rapidl...

متن کامل

Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows

The ability to electrically control transparency and scattering of light is important for many optoelectronic devices; however, such versatility usually comes with additional unwanted optical absorption and power loss. Here we present a hybrid switchable solar window device based on polymer dispersed liquid crystals (PDLCs) coupled to a semiconducting absorber, which can switch between highly t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016